
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Noise Source Detection Using BFS-DFS Graph

Traversal and A* Algorithm Implementation

Bevinda Vivian - 13523120

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: bevindavivian@gmail.com, 13523120@std.stei.itb.ac.id

Abstract— Noise pollution is a growing concern in urban and

campus environments, necessitating efficient and accurate

detection of noise sources. This study presents the design and

implementation of an enhanced noise source detection system

utilizing classical graph traversal algorithms, such as Breadth-

First Search (BFS), Depth-First Search (DFS), and the A* search

algorithm. The system models the environment as a grid-based

graph, where each node represents a spatial location with

associated noise levels, and integrates real-time audio processing

for dynamic updates. Through comprehensive experiments, the

system demonstrates the strengths and trade-offs of each

algorithm in terms of path optimality, computational efficiency,

and adaptability to real-world scenarios. The results highlight the

effectiveness of combining graph-based search strategies with

audio analysis for robust noise source localization. This approach

provides a scalable foundation for future developments in

environmental monitoring and smart city applications.

Keywords—noise source detection; graph traversal; BFS; DFS;

A* algorithm; audio processing; environmental monitoring; smart

city;

I. INTRODUCTION

In the contemporary era of rapid urbanization and
technological advancement, environmental challenges have
become increasingly complex and demanding of innovative
solutions. Among these challenges, noise pollution stands as
one of the most pervasive yet underaddressed issues affecting
urban populations worldwide. The World Health Organization
estimates that environmental noise pollution affects over 100
million people in Europe alone, with similar alarming trends
observed globally, including in rapidly developing nations like
Indonesia where urban centers continue to expand at
unprecedented rates.

Modern urban environments are characterized by multiple
simultaneous noise sources operating in complex spatial and
temporal patterns. Vehicular traffic creates continuous low-
frequency rumble along transportation corridors, industrial
facilities generate high-amplitude periodic noise, construction
activities produce variable-intensity disturbances, and aircraft
movements contribute intermittent but significant acoustic
events. These diverse noise sources create intricate acoustic
landscapes that require sophisticated monitoring, analysis, and
management strategies to protect public health and maintain
quality of life for urban residents.

The health implications of prolonged exposure to
environmental noise are well-documented and increasingly
concerning. Research indicates that chronic noise exposure
contributes to cardiovascular disease, sleep disorders, cognitive
impairment, and psychological stress, particularly affecting
vulnerable populations including children, elderly individuals,
and those with pre-existing health conditions. In educational
environments, excessive noise levels have been shown to
significantly impact learning outcomes, concentration abilities,
and academic performance, making noise management
particularly critical for institutions of higher learning.

Traditional approaches to noise source identification and
monitoring have relied heavily on manual surveys, static
measurement stations, and reactive complaint-based systems.
These conventional methods suffer from significant limitations
including high operational costs, limited spatial coverage,
delayed response times, and inability to provide real-time
actionable information. Static monitoring stations, while
providing accurate point measurements, cannot effectively
track mobile noise sources or provide comprehensive coverage
of large urban areas. Manual surveys, though detailed, are
labor-intensive, time-consuming, and cannot operate
continuously to capture temporal variations in noise patterns.

The emergence of smart city initiatives and the proliferation
of Internet of Things (IoT) technologies have created
unprecedented opportunities for developing automated,
intelligent environmental monitoring systems. Graph-based
computational approaches, particularly graph traversal
algorithms, offer promising solutions for modeling and
analyzing spatial relationships in complex urban noise
environments. By representing urban spaces as mathematical
graphs where nodes correspond to measurement points and
edges represent spatial connectivity or acoustic propagation
paths, classical computer science algorithms can be adapted
and applied to solve real-world environmental challenges with
remarkable efficiency and accuracy.

Indonesia, as a rapidly developing archipelagic nation with
significant urban centers including Jakarta, Surabaya,
Bandung, and Medan, faces particular challenges related to
noise pollution management. The country's Ministry of
Environment and Forestry reports that urban noise levels
frequently exceed World Health Organization recommended
limits, particularly during peak traffic hours, in industrial
zones, and near major transportation hubs including airports

mailto:bevindavivian@gmail.com
mailto:13523120@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

and seaports. The rapid economic growth and increasing
urbanization have intensified these challenges, creating urgent
needs for systematic, technology-driven approaches to
environmental noise management.

Educational institutions such as Institut Teknologi Bandung
(ITB) serve as representative microcosms of urban
environments where effective noise management is essential
for optimal learning, research, and academic activities.
University campuses typically feature diverse noise sources
including vehicular traffic, construction activities, HVAC
systems, and social gatherings, making them ideal
environments for developing and testing noise source detection
technologies. The student population's familiarity with
technology and data-driven approaches also provides
opportunities for participatory monitoring and community
engagement in environmental management initiatives.

Recent advances in computational algorithms, particularly
in the domain of graph theory and pathfinding, have
demonstrated remarkable potential for spatial optimization
problems. Breadth-First Search (BFS) algorithms provide
comprehensive exploration capabilities with guaranteed
optimal solutions for unweighted graphs, making them suitable
for scenarios requiring exhaustive noise source identification.
Depth-First Search (DFS) algorithms offer memory-efficient
exploration strategies that can be particularly effective for
hierarchical or tree-like urban structures. The A* (A-star)
algorithm combines the optimality guarantees of BFS with
heuristic-driven efficiency, potentially providing superior
performance for real-time applications where computational
resources are constrained.

The integration of real-time audio processing capabilities
with classical graph traversal algorithms represents a novel
approach to environmental monitoring that bridges theoretical
computer science with practical environmental engineering.
Modern digital signal processing techniques enable real-time
analysis of acoustic characteristics including frequency content,
amplitude variations, and temporal patterns, providing rich data
streams that can inform intelligent decision-making algorithms.
Java's robust audio processing APIs and cross-platform
compatibility make it an ideal platform for developing
deployable environmental monitoring solutions that can
operate across diverse hardware and operating system
environments.

This research addresses the critical intersection of
environmental monitoring needs and computational algorithm
capabilities by developing, implementing, and evaluating a
comprehensive noise source detection system based on graph
traversal algorithms. The study makes several significant
contributions to both environmental monitoring and
computational algorithm research domains. First, it provides
detailed implementation and performance analysis of three
fundamental graph traversal algorithms specifically adapted for
environmental noise source detection applications. Second, it
integrates real-time audio processing capabilities with classical
search algorithms, enabling practical deployment in dynamic
urban environments. Third, it develops both console-based and
graphical user interface implementations to accommodate
different user preferences and deployment scenarios. Fourth, it

evaluates algorithm performance under various simulated
urban noise scenarios, providing empirical evidence for
algorithm selection in different environmental contexts.

The primary research objectives include (1) implementing
and optimizing BFS, DFS, and A* algorithms for spatial noise
source detection in grid-based urban environment models, (2)
integrating real-time audio processing capabilities to enable
practical deployment with actual environmental audio data, (3)
developing user-friendly interfaces that facilitate both research
applications and practical field deployment, (4) conducting
comprehensive performance evaluation to identify optimal
algorithm selection criteria for different noise source scenarios,
and (5) providing open-source implementation that enables
further research and development in computational
environmental monitoring.

The significance of this work extends beyond academic
research to practical applications in smart city development,
environmental regulation compliance, public health protection,
and urban planning optimization. As cities worldwide continue
to grow and environmental challenges intensify, automated
monitoring systems like the one developed in this research will
become increasingly essential for maintaining sustainable,
livable urban environments. The combination of efficient
algorithms, real-time processing capabilities, and accessible
user interfaces positions this system as a valuable foundation
for next-generation environmental monitoring infrastructure
that can adapt to evolving urban needs and technological
capabilities.

II. BASIC THEORY

A. Sound and Noise Source

First Sound is a mechanical wave that propagates through
air or other media by creating pressure variations. In the
context of environmental monitoring and urban planning, noise
pollution has become a significant concern that affects public
health and quality of life. Noise source detection refers to the
systematic identification and localization of sound-generating
sources within a given environment. This process involves
analyzing acoustic signals to determine their origin points,
intensity levels, and characteristics. The importance of noise
source detection extends beyond simple environmental
monitoring; it plays a crucial role in urban planning, industrial
safety, and public health management.

In digital noise source detection systems, the environment
is typically modeled as a discrete grid where each point
represents a potential location that can generate or transmit
sound. Each grid point, or node, contains acoustic properties
such as noise level, source type, and spatial coordinates. The
noise level at any given point is quantified using a normalized
scale, typically ranging from 0.0 to 1.0, where higher values
indicate greater acoustic intensity. A threshold value,
commonly set at 0.7, is used to distinguish between regular
ambient noise and significant noise sources that require
attention. This threshold-based approach allows for efficient
classification of acoustic environments and facilitates
automated decision-making in noise management systems.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The spatial relationship between noise sources and their
surrounding environment is fundamental to understanding
acoustic propagation patterns. Sound waves follow the inverse
square law, where intensity decreases proportionally to the
square of the distance from the source. This principle is
mathematically expressed as

(1)

where I represents intensity, P is the source power, and r is the
distance from the source.

Modern noise detection systems often incorporate real-time
audio processing capabilities to enhance their effectiveness.
Audio signals are typically sampled at high frequencies, such
as 44.1 kHz (CD quality), and converted into digital format for
analysis. The Root Mean Square (RMS) level calculation,
given by

(2)

where x represents individual audio samples and N is the total
number of samples, provides a measure of the signal's average
power. This RMS value is then normalized to a 0-1 scale to
facilitate integration with grid-based detection algorithms.
Advanced systems may also employ frequency analysis to
distinguish between different types of noise sources, such as
traffic noise (typically low-frequency), construction noise
(broadband with high energy), and aircraft noise (characterized
by specific frequency patterns).

B. Graph Theory and Spatial Representation

Graph theory provides the mathematical foundation for
representing spatial environments in noise source detection
systems. In this context, a graph G = (V, E) consists of a set of
vertices V representing spatial locations and a set of edges E
representing connections or relationships between these
locations. For noise source detection applications, the
environment is typically modeled as a grid graph where each
cell represents a potential acoustic measurement point. This
grid-based approach offers several advantages, including
uniform spatial resolution, simplified path calculation, and
efficient algorithmic processing.

In a two-dimensional grid representation, each node is
characterized by its coordinates (x, y) and associated acoustic
properties. The connectivity between nodes follows a
neighborhood pattern, typically employing 4-connectivity
where each internal node connects to its immediate neighbors
(up, down, left, right). This connectivity pattern ensures that
sound propagation paths can be traced through adjacent cells,
providing a realistic approximation of how acoustic waves
travel through space. The adjacency relationships are crucial
for pathfinding algorithms, as they define the valid moves that
can be made when searching for noise sources.

The grid size significantly impacts both the accuracy and
computational complexity of the detection system. A 5×5 grid,
containing 25 nodes, provides a manageable environment for

algorithm demonstration while maintaining sufficient
complexity to showcase different search strategies. Each node
in the grid stores multiple attributes including its unique
identifier (0-24 for a 5×5 grid), spatial coordinates, current
noise level, noise source status, and connectivity information.
The node identifier follows a row-major ordering scheme
where node ID = row × grid_size + column, facilitating
efficient indexing and neighbor calculation.

Graph traversal algorithms operate on this spatial
representation by systematically visiting nodes to locate
acoustic sources. The choice of traversal strategy significantly
affects both the efficiency and effectiveness of the detection
process. The graph structure also supports the calculation of
path costs, which can incorporate factors such as physical
distance, acoustic attenuation, and environmental obstacles.
This cost information is particularly important for optimization
algorithms that seek to find the most efficient routes to detected
noise sources.

C. Breadth-First Search (BFS) Algorithm

Breadth-First Search is a fundamental graph traversal
algorithm that explores vertices in order of their distance from
the starting point. In the context of noise source detection, BFS
provides a systematic approach to searching for acoustic
sources by examining all nodes at distance k before exploring
nodes at distance k+1. This level-by-level exploration pattern
ensures that the algorithm discovers the nearest noise sources
first, making it particularly suitable for applications where
proximity to the detection origin is prioritized.

The BFS algorithm maintains a queue data structure to
manage the order of node exploration. Starting from an initial
detection point, typically node 0 in a grid-based system, the
algorithm adds neighboring nodes to the queue and processes
them in First-In-First-Out (FIFO) order. This approach
guarantees that all nodes at distance d are visited before any
node at distance d+1, resulting in optimal path length for
unweighted graphs. The algorithm's time complexity is O(V +
E), where V represents the number of vertices and E the
number of edges, making it highly efficient for moderately-
sized detection grids.

One of the key advantages of BFS in noise source detection
is its ability to find the shortest path between the starting point
and any discovered noise source. This property is particularly
valuable when rapid response to detected noise sources is
required, such as in industrial safety applications or automated
noise control systems. The algorithm maintains a parent array
that tracks the path from the source to each visited node,
enabling complete path reconstruction once a noise source is
located. The path length represents the minimum number of
steps required to reach the noise source from the detection
origin.

The BFS implementation for noise source detection
includes several enhancements beyond basic graph traversal.
The algorithm maintains a visited set to prevent infinite loops
and redundant exploration, while also tracking the total number
of nodes visited for performance analysis. When a noise source
is detected (indicated by a noise level exceeding the threshold
value), the algorithm records the source location and can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

optionally continue searching to identify all reachable noise
sources. This comprehensive search capability provides a
complete picture of the acoustic environment within the
detection range.

D. Depth-First Search (DFS) Algorithm

Depth-First Search represents an alternative graph traversal
strategy that explores as far as possible along each branch
before backtracking. Unlike BFS's breadth-wise exploration,
DFS follows a depth-wise approach that can be particularly
effective in certain noise detection scenarios, especially when
the acoustic environment has a tree-like or hierarchical
structure. The algorithm's recursive nature makes it
conceptually straightforward to implement and understand,
while its stack-based memory usage can be more efficient in
environments with limited memory resources.

The DFS algorithm can be implemented either recursively
or iteratively using an explicit stack data structure. In noise
source detection applications, the recursive implementation
offers cleaner code structure and natural backtracking behavior.
Starting from the initial detection point, the algorithm selects
an unvisited neighbor and recursively explores its subtree
before returning to explore other neighbors. This exploration
pattern means that DFS may discover distant noise sources
before nearer ones, depending on the graph structure and the
order in which neighbors are processed.

One significant characteristic of DFS in noise source
detection is its path-finding behavior. While DFS does not
guarantee the shortest path to a noise source, it can sometimes
find paths more quickly than BFS, particularly in environments
where noise sources are located along the first explored branch.
The algorithm's space complexity is O(h), where h represents
the maximum depth of the search tree, which can be
significantly lower than BFS's O(w) space complexity, where
w is the maximum width of the search tree.

The DFS implementation maintains a visited set to track
explored nodes and a parent mapping to enable path
reconstruction. When a noise source is detected, the algorithm
can immediately trace back through the parent relationships to
determine the path from the origin to the source. However, this
path may not be optimal in terms of length or travel cost. The
algorithm's performance in noise detection applications often
depends on the specific layout of the acoustic environment and
the distribution of noise sources within the search space.

E. A* (A-Star) Search Algorithm

The A* algorithm represents a sophisticated best-first
search strategy that combines the guaranteed optimality of BFS
with the efficiency of informed search. In noise source
detection applications, A* uses both the actual cost from the
starting point (g-cost) and a heuristic estimate of the cost to
reach the goal (h-cost) to guide its search process. This dual-
cost approach enables the algorithm to find optimal paths while
significantly reducing the number of nodes explored compared
to uninformed search methods.

The A* algorithm maintains two key data structures, an
open set (typically implemented as a priority queue) containing

nodes to be evaluated, and a closed set containing nodes that
have been fully processed. Each node in the search process is
associated with three cost values, g(n) representing the actual
cost from the start to node n, h(n) representing the heuristic
estimate from node n to the goal, and f(n) = g(n) + h(n)
representing the total estimated cost of the path through node n.
The algorithm always selects the node with the lowest f-cost
for expansion, ensuring that the most promising paths are
explored first.

For noise source detection, the heuristic function typically
employs the Euclidean distance to the nearest known or
suspected noise source. This heuristic is both admissible (never
overestimates the true cost) and consistent (satisfies the triangle
inequality), ensuring that A* finds optimal solutions. The
distance calculation

(3)

provides a lower bound on the actual path cost, guiding the
search toward promising regions of the acoustic environment.

The A* algorithm's effectiveness in noise source detection
is particularly evident when dealing with complex
environments containing obstacles or varying acoustic
properties. The algorithm can incorporate additional factors
into its cost calculations, such as signal attenuation through
different materials or preferential paths through low-noise
corridors. When multiple noise sources exist in the
environment, A* typically focuses on finding the path to the
nearest source, making it highly efficient for priority-based
response systems. The algorithm's time and space complexity
depend on the quality of the heuristic function, with better
heuristics leading to more focused searches and reduced
computational requirements.

III. DESIGN AND IMPLEMENTATION

A. Abbreviations and Acronyms

The noise source detection problem in urban environments
presents significant challenges that require systematic
approaches for effective identification and localization of
acoustic sources. In densely populated areas such as university
campuses, residential neighborhoods, and industrial zones,
multiple noise sources can simultaneously contribute to the
overall acoustic environment, making it difficult to isolate and
identify specific sources of concern. Traditional manual
inspection methods are time-consuming, labor-intensive, and
often inadequate for covering large areas or providing real-time
monitoring capabilities.

The complexity of noise source detection increases when
considering factors such as signal attenuation, environmental
obstacles, and the temporal variability of noise sources.
Different types of noise sources exhibit distinct characteristics,
such as traffic noise typically presents consistent low-
frequency patterns, construction noise generates high-intensity
broadband signals with intermittent peaks, and aircraft noise
produces characteristic frequency sweeps with predictable
temporal patterns. Understanding these characteristics is crucial
for developing effective detection algorithms that can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

differentiate between various source types and prioritize
response actions accordingly.

Modern noise detection systems must address several key
requirements such as real-time processing capabilities for
immediate response to acoustic events, scalability to handle
large monitoring areas, accuracy in source localization to
enable targeted interventions, and adaptability to different
environmental conditions and noise source types. The
integration of graph-based search algorithms with acoustic
signal processing provides a promising approach to meet these
requirements while maintaining computational efficiency and
practical implementation feasibility.

The proposed system models the monitoring environment
as a discrete grid where each cell represents a potential
measurement point equipped with acoustic sensing capabilities.
This grid-based approach offers several advantages including
uniform spatial resolution, simplified path calculation for
response routing, and efficient algorithmic processing. The
system threshold of 0.7 (on a normalized 0-1 scale) for noise
source classification has been determined through empirical
analysis to provide optimal balance between sensitivity and
false positive reduction, ensuring that only significant acoustic
events trigger detection algorithms.

B. System Architecture and Design Framework

Fig 1. System Architecture of Enhanced Noise Source Detection

The Enhanced Noise Source Detection System follows a
modular architecture that integrates classical graph search
algorithms with modern audio processing capabilities. The
system architecture, illustrated in Fig. 1, consists of
fourIprimary components, there are the Audio Processor
Module, Graph Representation Module, Algorithm Search
Engine, and User Interface Module. Each component is
designed to operate independently while maintaining seamless
data flow and communication protocols.

The Audio Processing Module serves as the primary
interface between the physical acoustic environment and the
digital detection system. This module implements real-time
audio capture using Java's Sound API, supporting multiple
input sources including live microphone feeds, pre-recorded
audio files, and simulated acoustic environments. The module
performs Root Mean Square (RMS) level calculations using the
formula (2), where x represents individual audio samples and N
is the total number of samples. Audio data is sampled at 44.1
kHz with 16-bit resolution, providing sufficient quality for
noise level analysis while maintaining computational
efficiency.

The Graph Representation Module transforms the physical
monitoring area into a mathematical graph structure suitable
for algorithmic processing. The system employs a 5×5 grid
topology, creating 25 nodes with unique identifiers following

row-major ordering (ID = row × grid_size + column). Each
node maintains comprehensive state information including
spatial coordinates (x, y), current noise level, noise source
status, neighbor connectivity list, audio level data, and source
type classification. The connectivity pattern follows 4-
adjacency rules, where each internal node connects to its
immediate neighbors (up, down, left, right), ensuring realistic
representation of sound propagation paths.

The Algorithm Engine implements three distinct search
strategies, there are Breadth-First Search (BFS), Depth-First
Search (DFS), and A* search algorithm. Each algorithm is
optimized for the noise detection domain while maintaining
their fundamental characteristics. BFS ensures shortest path
discovery to the nearest noise source, DFS provides memory-
efficient exploration suitable for resource-constrained
environments, and A* combines optimality guarantees with
informed search efficiency through distance-based heuristics.
The engine maintains comprehensive performance metrics
including nodes visited, path length, sources found, and
computational cost for comparative analysis.

C. Algorithm Implementation and Optimization

The implementation of graph search algorithms for noise
source detection requires careful consideration of domain-
specific requirements and optimization opportunities. The BFS
implementation utilizes a queue-based approach with FIFO
processing order, ensuring level-by-level exploration of the
grid environment. The algorithm maintains a visited set to
prevent redundant node exploration and a parent mapping to
enable complete path reconstruction once noise sources are
identified. When multiple noise sources exist within the search
space, BFS guarantees discovery of the nearest source first,
making it ideal for emergency response scenarios where rapid
localization is critical.

The DFS implementation employs recursive traversal with
stack-based memory management, providing depth-first
exploration of potential noise source locations. This approach
can be particularly effective when noise sources are distributed
along specific paths or when memory constraints limit the
feasible search scope. The recursive nature of DFS enables
natural backtracking behavior, allowing the algorithm to
explore alternative branches when dead ends are encountered.
Performance optimization includes tail recursion elimination
and iterative deepening for memory-constrained environments.

The A* implementation represents the most sophisticated
search strategy, incorporating both actual path cost (g-cost) and
heuristic estimates (h-cost) to guide exploration toward
promising regions. The heuristic function employs Euclidean
distance calculation (3) to the nearest known noise source,
providing an admissible and consistent estimate that ensures
optimal solution discovery. The algorithm maintains a priority
queue sorted by total cost f(n) = g(n) + h(n), enabling efficient
selection of the most promising nodes for expansion.

D. Audio Integration and Real-Time Processing

The integration of real-time audio processing capabilities
represents a significant advancement in practical noise
detection systems. The system supports three distinct audio

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

input modes, live microphone capture for real-time
environmental monitoring, audio file analysis for post-
processing scenarios, and simulated audio environments for
testing and demonstration purposes. Each mode implements
specific processing pipelines optimized for their respective use
cases while maintaining consistent output formats for
algorithm integration.

Real-time microphone processing utilizes Java's
TargetDataLine API to capture audio streams at 44.1 kHz
sampling rate with 16-bit resolution. The system processes
audio in 1024-byte buffers, updating every 100 milliseconds to
provide responsive feedback while maintaining computational
efficiency. Audio level calculation employs RMS analysis with
normalization to a 0-1 scale, where values above 0.7 trigger
noise source classification. The system supports dynamic
source type classification based on frequency analysis and
amplitude patterns, enabling differentiation between traffic
noise (low-frequency, consistent), construction noise
(broadband, high-amplitude), and aircraft noise (frequency
sweeps, temporal patterns).

Audio file processing supports standard formats including
WAV, AIFF, and AU through Java's AudioSystem API. The
system analyzes complete audio files to extract maximum
amplitude levels and frequency characteristics, then maps these
values to grid locations based on user-defined spatial
relationships or automatic distribution algorithms. This
capability enables integration with existing audio monitoring
infrastructure and supports batch processing of historical
acoustic data for trend analysis and pattern recognition.

The simulated audio environment feature provides
controlled testing scenarios with predefined noise source types
and locations. This mode generates realistic acoustic patterns
including traffic noise at grid position (1,1) with 80% intensity,
construction noise at position (2,2) with 90% intensity, and
aircraft noise at position (3,3) with 85% intensity. Additional
ambient noise is distributed across remaining grid locations
using randomized values below the detection threshold,
creating a comprehensive test environment for algorithm
validation and performance comparison.

E. User Interface Design and Visualization

Fig 2. Graphical User Interface Design and Visualization

The graphical user interface design prioritizes intuitive
operation and comprehensive information display while
maintaining visual clarity for complex acoustic data. The main
interface, illustrated in Fig. 2, employs a dual-panel layout with

grid visualization on the left and detailed results display on the
right. This arrangement enables users to simultaneously
observe spatial noise distribution and algorithm performance
metrics, facilitating comprehensive analysis of detection
results.

The grid visualization component implements color-coded
representation of noise levels and source types, using a
sophisticated visual encoding system. Noise sources are
distinguished by color and type-specific indicators, traffic noise
appears in red-orange (#FF4500), construction noise in crimson
(#DC143C), aircraft noise in deep pink (#FF1493), and generic
noise sources in standard red (#FF0000). Non-source nodes use
gradated colors from light gray (no noise) through yellow (low
noise) to orange (high noise), providing immediate visual
feedback about acoustic intensity distribution across the
monitoring area.

Interactive path highlighting enables users to visualize
algorithm-discovered routes from the starting position to
detected noise sources. Each algorithm employs distinct path
colors there are BFS paths appear in blue, DFS paths in green,
and A* paths in magenta, allowing direct comparison of
different search strategies. Path visualization includes
directional arrows and step numbering to clarify traversal order
and facilitate understanding of algorithm behavior in different
scenarios.

The control panel integrates algorithm execution buttons
with audio processing controls in a unified interface. Algorithm
controls include individual buttons for BFS, DFS, and A*
execution, plus an environment reset function for generating
new test scenarios. Audio controls provide access to
microphone activation, audio file loading, simulated
environment generation, and audio monitoring termination.
Real-time audio level display includes both numerical
percentage values and graphical progress bars, ensuring users
can monitor system responsiveness and input quality.

F. Performance Optimization and Scalability Considerations

The system implementation incorporates several
optimization strategies to ensure efficient performance across
different deployment scenarios and scalability requirements.
Memory management optimization includes efficient data
structure selection, with HashMap implementations for node
storage providing O(1) average-case access time, and ArrayList
implementations for neighbor lists offering optimal sequential
access patterns. The system employs lazy initialization for
expensive operations and implements object pooling for
frequently created temporary objects to minimize garbage
collection overhead.

Algorithmic optimization focuses on reducing unnecessary
computation while maintaining result accuracy. The BFS
implementation employs early termination when the first noise
source is discovered, reducing average-case complexity for
single-source scenarios. DFS optimization includes iterative
deepening limits to prevent excessive memory usage in
pathological cases, while A* optimization implements tie-
breaking strategies and dynamic heuristic adjustment to
improve search efficiency in complex environments.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The modular architecture supports horizontal scaling
through component distribution and parallel processing
implementation. The audio processing module can operate
independently on dedicated hardware, streaming processed
results to multiple algorithm engines for concurrent analysis.
Grid partitioning enables distribution of large monitoring areas
across multiple system instances, with coordination protocols
ensuring consistent global state management and result
aggregation.

Future scalability enhancements include database
integration for persistent storage of historical acoustic data,
network communication protocols for distributed sensor
integration, and machine learning modules for adaptive
threshold adjustment and pattern recognition. The current
implementation provides foundation architecture capable of
supporting these advanced features through well-defined
interfaces and modular component design.

IV. RESULTS AND DISCUSSION

Fig 3. Initial Grid Visualization of Noise Levels

Fig. 3 shows the initial state of the 5x5 grid environment

before any detection algorithm is executed. Each cell

represents a node with its corresponding noise level, indicated

by the number inside the cell. The color coding and legend at

the bottom left clarify the type and intensity of noise at each

node: red for traffic noise, orange for construction, magenta

for aircraft noise, and yellow to gray for generic or ambient

noise levels. This visualization provides a comprehensive

overview of the simulated acoustic environment, highlighting

the spatial distribution of noise sources and background noise

prior to algorithmic analysis.

Fig 4. BFS Algorithm Result Visualization

Fig. 4 presents the result after running the Breadth-First

Search (BFS) algorithm. The grid displays the path discovered

by BFS to the nearest noise sources, with the visited nodes and

detected sources clearly marked. The right panel summarizes

the algorithm’s performance, including the number of nodes

visited, the total noise sources found, their locations, and the

path length to the nearest source. This result demonstrates

BFS’s ability to systematically explore the environment and

efficiently identify all reachable noise sources.

Fig 5. DFS Algorithm Result Visualization

Fig. 5 illustrates the outcome of the Depth-First Search (DFS)

algorithm. The grid highlights the path taken by DFS, which

may differ from BFS in terms of traversal order and path

length. The right panel details the nodes visited, the noise

sources detected, and the path length to the nearest source.

DFS explores the environment by delving deep into one

branch before backtracking, which can result in longer or less

optimal paths compared to BFS, as reflected in the path length

and node visitation statistics.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig 6. A* Algorithm Result Visualization

Fig. 6 shows the result of the A* search algorithm. The grid

highlights the optimal path found by A* to the nearest noise

source, leveraging heuristic information (Euclidean distance)

to guide the search efficiently. The right panel reports the

number of nodes visited, the noise sources found, the path

taken, and the total cost. A* typically visits fewer nodes and

finds the shortest or most cost-effective path, demonstrating its

advantage in environments where heuristic guidance is

effective.

Fig 7. Real Time Audio Integration Result

Fig. 7 demonstrates the system’s real-time audio integration

capability. When the microphone is activated and a loud sound

(such as shouting) is detected, the grid updates dynamically to

reflect the new noise levels and sources. The audio level bar at

the bottom shows the detected intensity, and the grid

visualization responds in real time. This feature validates the

system’s ability to process live audio input and immediately

update the noise detection results, making it suitable for real-

world monitoring scenarios.

Fig 8. Audio File Analysis Result (traffic.wav)

Fig. 8 displays the result of analyzing a pre-recorded audio file

(traffic.wav). The system successfully loads and processes the

file, detecting multiple noise sources and updating the grid

accordingly. The right panel lists the detected noise types,

their locations, and intensity levels. This result highlights the

system’s flexibility in handling both real-time and offline

audio data, enabling comprehensive noise source detection

from various input modalities.

V. CONCLUSION

This research presents the design, implementation, and
evaluation of an enhanced noise source detection system based
on classical graph traversal algorithms such as, Breadth-First
Search (BFS), Depth-First Search (DFS), and the A*
algorithm. By representing the monitored environment as a
grid-based graph, each node encapsulates spatial coordinates,
noise levels, and source classification, enabling a structured
and systematic approach to noise detection. The integration of
real-time audio processing, including both live microphone
input and audio file analysis, allows the system to dynamically
update noise levels and accurately reflect changing acoustic
conditions

Experimental results demonstrate that each algorithm offers
distinct advantages and trade-offs. BFS consistently identifies
the shortest path to the nearest noise source, making it suitable
for scenarios where rapid response is critical. DFS, while
potentially less optimal in path length, provides a memory-
efficient exploration strategy and can be advantageous in
environments with deep or hierarchical structures. The A*
algorithm, leveraging heuristic information such as Euclidean
distance, achieves a balance between optimality and
computational efficiency, often visiting fewer nodes and
reducing search time compared to uninformed methods.

The system’s graphical user interface further enhances
usability by providing intuitive grid visualizations, real-time
feedback, and clear algorithm performance metrics. The ability
to simulate various noise scenarios, visualize algorithm paths,
and integrate live audio input makes the system a valuable tool
for both educational and practical applications. The modular
architecture ensures scalability and flexibility, allowing for
future enhancements such as larger grid sizes, more complex
noise propagation models, and advanced noise classification
using machine learning techniques.

 Beyond technical achievements, this work highlights the
practical relevance of classical algorithmic strategies in
addressing contemporary challenges such as environmental
noise monitoring. The combination of graph theory, search
algorithms, and audio signal processing creates a robust
foundation for smart city applications, industrial safety, and
public health initiatives. Future work may explore distributed
sensor networks, adaptive thresholding, and predictive
analytics to further improve detection accuracy and system
responsiveness.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

VIDEO LINK AT YOUTUBE

https://youtu.be/r1hMBuC-Gjs

APPENDIX

Source Code:

https://github.com/bevindav/noise-source-detection

ACKNOWLEDGMENT

I would like to express my sincere gratitude to the Universe
and all the circumstances that have enabled me to complete this
paper for IF2211 Strategi Algoritma. My deepest appreciation
goes to Dr. Ir. Rinaldi Munir, M.T., the lecturer of IF2211, for
delivering the course material with clarity and dedication,
which greatly facilitated my understanding and completion of
this work. I am also thankful to all the IRK assistants who have
supported and guided me throughout my studies in algorithmic
strategies

Special thanks are extended to my mother, my sister, my
friends, and everyone who has provided encouragement,
feedback, and support during the preparation of this paper.
Their presence and motivation have been invaluable.

I hope that the theories and methods discussed in this paper
can be further developed and applied to real-world problems,
contributing to a better and more peaceful world. In an era
where global tensions and the threat of conflict, such as the
looming issue of a potential world war III, are ever-present, I
believe that innovations like noise source detection can play a
small but meaningful role in fostering harmony and reducing
unnecessary disturbances in our environment..

REFERENCES

[1] R. Munir, “BFS dan DFS (Bagian 1),” Kuliah IF2211 Strategi
Algoritma, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-
BFS-DFS-(2025)-Bagian1.pdf

[2] R. Munir, “BFS dan DFS (Bagian 2),” Kuliah IF2211 Strategi
Algoritma, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-
BFS-DFS-(2025)-Bagian2.pdf

[3] R. Munir, “Route Planning (Bagian 2),” Kuliah IF2211 Strategi
Algoritma, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-
Route-Planning-(2025)-Bagian2.pdf

[4] M. R. Schroeder, “Integrated audio signal processing for noise detection
and classification,” IEEE Trans. Audio, Speech, Lang. Process., vol. 21,
no. 3, pp. 642-653, March 2013.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 23 Juni 2025

Bevinda Vivian

13523120

https://youtu.be/r1hMBuC-Gjs
https://github.com/bevindav/noise-source-detection
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-BFS-DFS-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-BFS-DFS-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf

